O.P.Code: 19EC0410

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May/June-2024 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 Hours		Max. Marks: 60		
(Answer all Five Units $5 \times 12 = 60$ Marks)				
	UNIT-I			
1	Explain the following with expression.	CO1	L2	12M
	(i) Coloumb's law. (ii) Electric field intensity. (iii) Gauss law.			
2	OR Define Cayee's Law Evaloin briefly about Maywell's 1st aquation	CO1	L1	6M
2	a Define Gauss's Law. Explain briefly about Maxwell's 1st equation.b What are the advantages and applications of Gauss law?	CO1	L1	6M
	UNIT-II	COI		UIVI
	·	CO2	т э	(M
3	a A Current Distribution gives rise to the vector potential	CO ₂	L3	6M
	$A = X^2 Y a_x + Y^2 X a_y + X Y Z a_z$ web/m. Calculate B.	CO2	L2	6M
	b Explain about Non-Existence of Magnetic Mono pole. OR	COZ	LZ	OIVI
4	Explain any two applications of Ampere's Circuit law.	CO2	L2	12M
- 4	UNIT-III	CO2	1/2	1211
_		CO2	T =	ON I
5	a Determine the Transformer EMF for the time varying fields.	CO3	L5 L1	8M 4M
	b Define Faraday's law. OR	COS	LI	4111
6	Explain and determine the EMF for the Followings.	CO3	L2	12M
U	(i) Motional EMF. (ii) Transformer EMF.	000	1.2	12111
	UNIT-IV			
7	Evaluate the expressions for reflection coefficient and transmission	CO4	L5	12M
	coefficient by a normal incident wave for a dielectric medium.			
	OR			
8	Explain the followings with an expression. (i) Linear polarization	CO5	L2	12M
	(ii) Circular polarization (iii) Elliptical polarization			
	UNIT-V			
9	A 50Ω lossless transmission line is terminated on a load impedance of	CO6	L3	12M
	$Z_L = (25 + j 50) \Omega$. Use the smith chart to find.			
	i) Voltage reflection coefficient.			
	ii) VSWR.			
iii) input impedance of the line, given that the line is 0.3λ long.				
10	OR	CO4	T 5	71/
10	a Evaluate the equation for voltage and current at any point in a transmission line.	CO6	L5	7M
	b Discuss about Transmission line Parameters	CO6	L6	5M
	*** END ***		LU	2111

.